Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 12(26): e2300970, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37379527

RESUMO

Mesenchymal stem cell (MSC) therapies have been brought forward as a promising treatment modality for cutaneous wound healing. However, current approaches for stem cell delivery have many drawbacks, such as lack of targetability and cell loss, leading to poor efficacy of stem cell therapy. To overcome these problems, in the present study, an in situ cell electrospinning system is developed as an attractive approach for stem cell delivery. MSCs have a high cell viability of over 90% even with a high applied voltage of 15 kV post-cell electrospinning process. In addition, cell electrospinning does not show any negative effect on the surface marker expression and differentiation capacity of MSCs. In vivo studies demonstrate that in situ cell electrospinning treatment can promote cutaneous wound healing through direct deposition of bioactive fish gelatin fibers and MSCs onto wound sites, leading to a synergic therapeutic effect. The approach enhances extracellular matrix remodeling by increasing collagen deposition, promotes angiogenesis by increasing the expression of vascular endothelial growth factor (VEGF) and forming small blood vessels, and dramatically reduces the expression of interleukin-6 (IL-6) during wound healing. The use of in situ cell electrospinning system potentially provides a rapid, no touch, personalized treatment for cutaneous wound healing.


Assuntos
Células-Tronco Mesenquimais , Fator A de Crescimento do Endotélio Vascular , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização , Colágeno/metabolismo , Pele
2.
STAR Protoc ; 4(1): 102131, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36861839

RESUMO

Here, we present a protocol for controllable biomimetic mineralization at the nano-scale, simulating natural ion-enriched sedimentary mineralization. We describe steps for treatment of metal-organic frameworks with polyphenol-mediated stabilized mineralized precursor solution. We then detail their use as templates to assemble metal-phenolic frameworks (MPFs) with mineralized layers. Furthermore, we demonstrate the therapeutic benefits of MPF delivery by hydrogel to the full-thickness skin defect model in rats. For complete details on the use and execution of this protocol, please refer to Zhan et al. (2022).1.


Assuntos
Nanopartículas , Polifenóis , Animais , Ratos , Polifenóis/farmacologia , Biomimética , Fenóis , Cicatrização
3.
Pharm Res ; 40(4): 873-887, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35352281

RESUMO

Exosomes are extracellular vesicles secreted by cells with a particle size of 30-150 nm in diameter. Exosomes can be used as natural drug carriers. The treatment of cancer with drug-loaded exosomes is an area of high interest. This review introduces the composition, function, isolation and characterization of exosomes, and briefly describes the selection of exosome donor cells and methods for drug loading. Through studies on therapies with drug-loaded exosomes in gastric cancer, lung cancer, brain cancer and other cancers, the advantages and disadvantages of drug-loaded exosomes have been analyzed.


Assuntos
Neoplasias Encefálicas , Exossomos , Neoplasias Pulmonares , Humanos , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...